DC/DC-Wandler

Wie sich bipolare Spannungen störungsarm erzeugen lassen

Seite: 2/3

Firmen zum Thema

Inverting-Topologie braucht nur wenige Komponenten

Eine Inverting-Topologie kann eine negative Spannung mit nur einer Induktivität erzeugen. Bild 4 zeigt eine solche Schaltung. Sie gehört zu einer der drei grundlegenden Schaltreglertopologien, die neben einem Eingangs- und Ausgangskondensator mit nur jeweils einem Schalter, einer Diode und einer Induktivität auskommt. Zu dieser Gruppe gehören der Abwärtswandler (Buck) der Hochsetzsteller (Boost) sowie die Inverting-Topologie. Somit hat der Inverting-Regler nur einen geringen Bauteilebedarf und hat eine generell hohe Leistungseffizienz.

Bildergalerie
Bildergalerie mit 6 Bildern

Praktisch kann für eine Inverting-Schaltung ein beliebiger Buck-Regler oder -Kontroller verwendet werden. Er wird so betrieben, dass der Masseanschluss des Buck-Reglers zur negativen Ausgangsspannung wird. Dies funktioniert gut, bringt jedoch weitere Auswirkungen mit sich. Dadurch haben die Interface-Pins des Buck-Reglers, beispielsweise Soft-Start, Enable, Frequenzeinstellung und ähnliches keinen Systemmassebezug mehr, sondern Bezug zur erzeugten negativen Spannung, also zum Masseanschluss des Schaltreglers. Dies kann eine zusätzliche Schaltung zum Umsetzen von Signalspannungen erfordern.

Doppel-Schaltregler-IC optimiert die Schaltung

Eine sehr geschickte Möglichkeit eine negative Versorgungsspannung zu erzeugen, ist die Verwendung eines integrierten Stromversorgungsbausteins. Bild 5 zeigt eine solche Schaltung mit dem Schaltregler IC ADP5070 von Analog Devices. Er besteht aus zwei voneinander getrennten DC/DC-Wandlern, die aus einem Eingangsspannungsbereich von 2,85 bis 15 V sowohl eine positive als auch eine negative Spannung erzeugen.

Die positive wird mit einer Boost-Topologie erzeugt und kann bis 39 V betragen, die negative wird mit der Inverting-Topologie erzeugt und kann bis auf bis zu –39 V eingestellt werden. In den meisten Systemen geht man davon aus, dass, wenn eine negative Spannung gebraucht wird, auch eine positive Spannung notwendig ist. Somit ist es vorteilhaft, beide Schaltregler in einem IC zusammenzufassen.

Diese Integration hat neben einem geringen Platzbedarf weitere Vorteile. So sind die Schaltfrequenzen der beiden getrennten Schaltregler in diesem einen IC mit einem Phasenversatz synchronisiert. Das hilft, die von dem Schaltregler erzeugen Störungen, zu minimieren. Wie bei einer invertierenden Topologie üblich, kann der Betrag der negativen Ausgangsspannung größer oder kleiner sein, als die Eingangsspannung selber (Buck-Boost).

Die positive Ausgangsspannung des ADP5070 kann ebenfalls größer oder kleiner sein als die Eingangsspannung. Hierfür kann der Regler in einer üblichen ‚Boost‘-Topologie als auch in einer ‚SEPIC‘-Topologie betrieben werden. Die Regelschleife ist so ausgelegt, dass beide Betriebsarten zulässig sind.

Ein integrierter Schaltregler bietet viele Möglichkeiten

Der integrierte Schaltregler für die Inverting-Topologie beinhaltet automatische Spannungsanpassungen für alle Interface Anschlüsse. Somit können beispielsweise Signale zum Ein- und Ausschalten, oder zum Einstellen der Schaltfrequenz, einen Systemmassebezug haben und müssen nicht, wie bei der Inverting-Topologie allgemein üblich, mit Spannungsumsetzern angepasst werden. Es sind unterschiedliche Arten der Einschaltung vorgesehen.

Entweder ein gleichzeitiges Anlaufen der positiven und der negativen Ausgangsspannung oder ein sequentielles Anlaufen, wobei eine Spannung erst eine gewisse Schwelle (ca. 85%) der eingestellten Ausgangsspannung erreichen muss, bevor die andere Spannung aktiviert wird. Neben der flexiblen Anlaufmöglichkeit kann die Anlaufgeschwindigkeit jeweils getrennt mit einem eigenen Soft-Start eingestellt werden.

Um eine kleine Bauform der Stromversorgung zu ermöglichen, ist die Schaltfrequenz bis 2,4 MHz einstellbar und bis 2,6 MHz mit einem externen Takt synchronisierbar. Diese sehr hohen Schaltfrequenzen ermöglichen die Verwendung von kleinen und kostenoptimierten Induktivitäten. Zudem hilft der hohe Freiheitsgrad der Schaltfrequenz dabei, erzeugte Störungen auf Frequenzbereiche zu setzen, bei denen das System besonders wenig gestört wird.

(ID:43361045)