Motion Control

Sinusförmig ansteuern – der Weg zu niedrigen Verlusten bei HV-IPDs

Seite: 3/3

Anbieter zum Thema

Die 600-V-MOSFETs bieten im Vergleich zu IGBT-basierten Treibern mehr Sicherheitsspielraum über der maximalen Betriebsspannung und erlauben ein kleineres SMD-Gehäuse. Mit der SMD-Technik vereinfacht sich die Montage der Module durch den automatisierten Pick-and-Place-Produktionsprozess. Die MOSFETs stammen aus Toshibas HSD-Serie (High-Speed Diode). Sie enthalten Body-Dioden mit schneller Sperr-Erholzeit und überzeugen im Vergleich zu herkömmlichen Leistungs-MOSFETs durch einen höheren Wirkungsgrad.

Der neue Aufbau des Bausteins senkt den Wärmewiderstand nun auf 15 °C/W, was zu einer geringeren Wärmentwicklung als bei DIP-Gehäusen (Dual In-Line Package) führt. Der höhere Wirkungsgrad, der geringere Durchlasswiderstand (RDS(on)) und das gegenüber IGBTs verbesserte Schaltverhalten sorgen insgesamt für weniger Leistungsverluste.

Bildergalerie

Neben dem höheren Wirkungsgrad garantiert das Multi-Chip-Design, dass die erzeugte Wärme über das gesamte Gehäuse verteilt wird, wodurch die Gehäusetemperatur insgesamt sinkt. Im Gegensatz dazu sammelt sich in einem Single-Chip-Design die gesamte Wärme in einem monolithischen Chip.

Bild 4 vergleicht die Leistungsverluste des Moduls in Bezug auf gleichwertige Antriebe mit anderen HV-IPDs oder den TPD4144K unter vergleichbaren Betriebsbedingungen. Das Wärmeverhalten des MOSFET-basierten TPD4204F hat sich ebenfalls verbessert und ermöglicht den Betrieb des Controllers ohne Kühlkörper. Das Resultat: die Gesamtkosten und der Platzbedarf des Moduls sinken.

Die Totzeit des Bausteins wird mit nur 1,4 µs (Minimum) spezifiziert, und der integrierte Logik-Controller schützt den Baustein während dieser Zeit. Ohne Logik-Schutzschaltkreis können sich sowohl die High-Side- als auch die Low-Side-MOSFETs gleichzeitig einschalten, was zu einem Kurzschluss führt. Dagegen sorgt die Schutzvorrichtung zuverlässig dafür, dass Zeitfehler im Schaltvorgang keinen Ausfall verursachen können. Bei diesem Worst-Case-Szenario würde durch den integrierten Überstromschutz ein hoher Stromfluss erkannt, was eine Abschaltung der High- und Low-Side-MOSFETs zur Folge hätte, um eine Überlastung des Bausteins zu verhindern.

Ergänzendes zum Thema
Originalbeitrag als ePaper oder im pdf-Format lesen

Dieser Autorenbeitrag ist in der Printausgabe ELEKTRONIKPRAXIS 20/2015 erschienen. Diese ist auch als kostenloses ePaper oder als pdf abrufbar.

Evaluierungsboards für die einfache Analyse und Entwicklung

Toshibas Angebot an Bausteinen im DIP26-Gehäuse enthält anschlusskompatible ICs mit verschiedenen Nennströmen. Die Bausteine lassen sich somit einfach in zukünftige Designs mit unterschiedlichen Motorleistungen integrieren.

Ein ähnliches Konzept, basierend auf dem SOP30-Gehäuse, ist derzeit in der Design-Phase. Damit lassen sich dann geringere Verluste erzielen, ohne hohe Kosten für ein Redesign aufbringen zu müssen.

Damit neue HV-IPD-basierte Controller mit trapez- oder sinusförmiger Ansteuerung einfacher entwickelt werden können, bietet Toshiba eine Reihe von Evaluierungsboards, mit denen sich die Leistungsfähigkeit MOSFET- oder IGBT-basierter Module in neuen Designs testen lässt.

* Georges Tchouangue ist Chief Engineer Discrete Marketing – Power Semiconductors bei Toshiba Electronics Europe, Düsseldorf.

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung

(ID:43243848)