Quantenlichtquellen ebnen den Weg zu optischen Schaltkreisen

| Redakteur: Michael Eckstein

Es werde Lichtchen: Das hochpräzise Platzieren winziger Photonenquellen auf Chip-Substrat ist ein wichtiger Schritt in Richtung Quantencomputer.
Es werde Lichtchen: Das hochpräzise Platzieren winziger Photonenquellen auf Chip-Substrat ist ein wichtiger Schritt in Richtung Quantencomputer. (Bild: Christoph Hohmann / MCQST)

Lichtquellen in atomar dünnen Materialschichten auf wenige Nanometer genau zu platzieren gilt als Voraussetzung für den Bau von Quantencomputern. Forschern an der TU München ist genau dieser wichtige Schritt jetzt gelungen. Damit rücken Anwendungen in greifbare Nähe, die Quantentechnologien nutzen - etwa Quanten-Sensoren, photonische Transistoren in Smartphones bis hin zu neuen Verschlüsselungstechnologien für die Datenübertragung.

Bisherige Schaltkreise auf Chips bauen auf Elektronen als Informationsträger. Künftig könnten diese Aufgabe auch Photonen übernehmen, die in optischen Schaltkreisen mit Lichtgeschwindigkeit Informationen übermitteln. Als Grundbausteine solcher neuartigen Chips braucht man Quantenlichtquellen, die dann mit Quantenlichtwellenleitern und -detektoren verbunden werden.

Einem internationalen Team um die Physiker Alexander Holleitner und Jonathan Finley an der Technischen Universität München (TUM) ist es nun gelungen, solche Quantenlichtquellen in atomar dünnen Materialschichten zu erzeugen und nanometergenau zu platzieren.

Erster Schritt zum optischen Quantencomputer

„Dies stellt einen ersten wichtigen Schritt in Richtung optischer Quantencomputer dar“, sagt Julian Klein, Erstautor der Studie. „Denn für künftige Anwendungen müssen die Lichtquellen an photonische Schaltkreise, etwa an Wellenleiter, gekoppelt werden, um lichtbasierte Quantenberechnungen zu ermöglichen.“

Entscheidend dafür ist eine exakte und präzise steuerbare Platzierung der Lichtquellen. In konventionellen dreidimensionalen Materialien wie Diamant oder Silizium gibt es zwar auch aktive Quantenlichtquellen, allerdings lassen sie sich dort nicht präzise platzieren.

Deterministische Defekte

Als Ausgangsmaterial verwendeten die Physiker eine nur eine Atomlage dünne Schicht des Halbleiters Molybdändisulfid (MoS2). Diese bestrahlten sie mit einem Helium-Ionenstrahl, den sie auf eine Fläche von weniger als einem Nanometer fokussierten.

Um optisch aktive Defekte, die gewünschten Quantenlichtquellen, zu erzeugen, werden aus der Schicht Molybdän- oder Schwefel-Atome gezielt herausgelöst. Die Fehlstellen sind Fallen für sogenannte Exzitonen, Elektronen-Loch-Paare, die dann die gewünschten Photonen emittieren.

Technisch von zentraler Bedeutung war dafür das neue Helium-Ionen-Mikroskop am Zentrum für Nanotechnologie und Nanomaterialien des Walter Schottky-Instituts, mit dem sich solche Materialien mit einer bisher unerreichten örtlichen Auflösung bestrahlen lassen.

Auf dem Weg zu neuartigen Lichtquellen

Das Team entwickelte gemeinsam mit Theoretikern der TUM, der Max-Planck-Gesellschaft und der Universität Bremen ein Modell, um die beobachteten Energiezustände der Fehlstellen auch theoretisch zu beschreiben.

Zukünftig wollen die Forscher auch komplexere Lichtquellen-Muster erzeugen, etwa in lateralen zweidimensionalen Gitterstrukturen von Exzitonen, um so auch Vielteilchenphänomene oder exotische Materialeigenschaften zu untersuchen.

Dies ist die experimentelle Eintrittspforte in eine bislang nur theoretisch beschriebene Welt im Rahmen des sogenannten Bose-Hubbard-Modells, das versucht, komplexe Vorgänge in Festkörpern zu erfassen.

Quantensensoren, Transistoren und sichere Verschlüsselung

Doch nicht nur in der Theorie könnte es Fortschritte geben, sondern auch hinsichtlich möglicher technischer Entwicklungen. Da den Lichtquellen immer der gleiche Defekt im Material zugrunde liegt, sind sie prinzipiell ununterscheidbar. Das ermöglicht Anwendungen, die auf dem quantenmechanischen Prinzip der Verschränkung basieren.

„Man kann unsere Quantenlichtquellen sehr elegant in photonische Schaltkreise integrieren“, sagt Klein. „Aufgrund der hohen Empfindlichkeit ließen sich beispielsweise für Smartphones Quanten-Sensoren bauen und extrem sichere Verschlüsselungstechnologien für die Datenübertragung entwickeln.“

Granulares Aluminium als Supraleiter für Quantencomputer

Granulares Aluminium als Supraleiter für Quantencomputer

03.05.19 - Forscher am Karlsruher Institut für Technologie haben in einer Studie gezeigt, dass granulares Aluminium in Quantenschaltungen großes Potenzial besitzt, die bisherigen Grenzen der Quantencomputer zu überwinden. lesen

Quantenelektronik: Magnetische Kühlung für extrem tiefe Temperaturen

Quantenelektronik: Magnetische Kühlung für extrem tiefe Temperaturen

05.06.19 - Als weltweit erstem Unternehmen ist es dem Startup kiutra gelungen, eine dauerhafte magnetische Kühlung für Temperaturen nahe des absoluten Nullpunkts zu entwickeln. lesen

Kommentar zu diesem Artikel abgeben

Schreiben Sie uns hier Ihre Meinung ...
(nicht registrierter User)

Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
Kommentar abschicken
copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de/ (ID: 46061305 / Technologie & Forschung)