Suchen

Optischer Sensor spürt SARS-CoV-2 auf

| Autor / Redakteur: Karin Weinmann* / Dipl.-Ing. (FH) Hendrik Härter

Mit einem optischen Sensor soll das Virus SARS-CoV-2 festgestellt werden. Tests mit dem Verwandten SARS-CoV waren erfolgreich und der Sensor unterscheidet klar zwischen ähnlichen RNA-Sequenzen. Doch es ist noch Entwicklungsarbeit notwendig.

Firmen zum Thema

(Bild: gemeinfrei / CC0 )

Gewöhnlich forscht Jing Wang an der Eidgenössische Material- Prüfungs- und Forschungsanstalt (Empa) und an der ETH Zürich mit seinem Team daran, Luftschadstoffe wie Aerosole und künstlich hergestellte Nanopartikel zu messen, zu analysieren und zu vermindern. Doch die aktuelle Pandemie erfordert es, Ziele und Strategien kurzfristig zu ändern. Der neue Fokus: ein Sensor, um SARS-CoV-2 festzustellen.

Ganz so weit weg von der bisherigen Forschungsarbeit der Gruppe ist die Idee jedoch nicht: Bereits bevor sich das Virus von China aus der ganzen Welt ausbreitete, forschten Wang und seine Mitarbeiter an Sensoren, die Bakterien und Viren in der Luft feststellen können. Bereits im Januar reifte die Idee, diese Grundlagen zu nutzen – und den Sensor so weiterzuentwickeln, dass er einen spezifischen Virus zuverlässig identifiziert. Der Sensor soll die etablierten Labortests nicht unbedingt ersetzen, sondern er könnte als alternative Methode für die klinische Diagnose genutzt werden. Und insbesondere, um die Virenkonzentration in der Luft in Echtzeit zu messen, etwa an stark frequentierten Orten wie Bahnhöfen oder in Spitälern.

Optischer Biosensor

Um das Virus nachzuweisen, verwenden die Labore eine molekulare Methode, die sich „Reverse Transcription Polymerase Chain Reaction“ nennt, kurz RT-PCR. Damit lassen sich Viren bei Infektionen der Atemorgane aufspüren. Diese ist etabliert und kann bereits winzige Mengen der Viren aufspüren – doch gleichzeitig sind die Tests oft zeitraubend.

Jing Wang hat mit seinem Team eine alternative Testmethode entwickelt, in der Form eines optischen Biosensors. Der Sensor verbindet dabei zwei verschiedene Effekte, um das Virus sicher und zuverlässig aufzuspüren: einen optischen und eine thermischen. Der Sensor basiert auf winzigen Strukturen aus Gold, sogenannte Gold-Nanoinseln, auf einem Glassubstrat. Auf den Nanoinseln werden künstlich hergestellte DNA-Sequenzen aufgebracht, die zu bestimmten RNA-Sequenzen des SARS-CoV-2-Virus passen. Das neue Coronavirus ist ein sogenanntes RNA-Virus: Sein Genom besteht, nicht wie etwa bei Menschen, Tieren und Pflanzen, aus DNA-Doppelsträngen, sondern aus einem einzelnen RNA-Strang. Die künstlichen DNA-Rezeptoren auf dem Sensor sind also die Komplementärsequenzen zu den eindeutigen RNA-Genomsequenzen des Virus, die diesen eindeutig identifizieren können.

Zuverlässiger Nachweis dank Wärme

Die verwendete Techik zum Aufspüren des Virus nennt sich LSPR (Localized Surface Plasmon Resonance). Dabei handelt es sich um ein optisches Phänomen, das bei metallischen Nanostrukturen auftritt: Diese modulieren im angeregten Zustand das einfallende Licht in einem bestimmten Wellenlängenbereich und erzeugen ein sogenanntes plasmonisches Nahfeld um die Nanostruktur. Wenn an der Oberfläche Moleküle andocken, dann ändert sich genau an dieser Stelle der optische Brechungsindex in diesem plasmonischen Nahfeld. Mit einem optischen Sensor, der sich auf der Hinterseite des Sensors befindet, lässt sich dies messen und somit feststellen, ob sich in der Probe die gesuchten RNA-Stränge befinden.

Zentral ist dabei, dass nur diejenigen RNA-Stränge vom DNA-Rezeptor auf dem Sensor eingefangen werden, die exakt darauf passen. Hier kommt ein zweiter Effekt ins Spiel: der plasmonische photothermale Effekt (PPT). Wird dieselbe Nanostruktur auf dem Sensor mit einem Laser einer bestimmten Wellenlänge angeregt, so produziert diese Wärme.

Und wie hilft das nun der Zuverlässigkeit? Wie bereits erwähnt, besteht das Erbgut des Virus nur aus einem einzelnen RNA-Strang. Findet dieser Strang sein komplementäres Gegenstück, so verbinden sich die beiden zu einem Doppelstrang – ein Vorgang, der sich Hybridisierung nennt. Das Gegenteil – wenn sich also ein Doppelstrang in Einzelstränge aufspaltet – nennt sich Schmelzung oder Denaturierung. Dies geschieht bei einer bestimmten Temperatur, der Schmelztemperatur. Wenn die Umgebungstemperatur nun aber viel tiefer ist als die Schmelztemperatur, können sich auch Stränge verbinden, die nicht zu 100% komplementär zueinander sind. Das kann zu falschen Testresultaten führen. Ist die Umgebungstemperatur hingegen nur leicht tiefer als die Schmelztemperatur, können sich nur noch komplementäre Stränge zusammenfügen. Und genau dies ist das Resultat der erhöhten Umgebungstemperatur, die durch den PPT-Effekt verursacht wird.

Noch ist der Sensor nicht bereit

Um aufzuzeigen, wie zuverlässig der neue Sensor den aktuellen COVID-19-Virus feststellt, testeten ihn die Forscher mit einem sehr nah verwandten Virus: SARS-CoV. Dabei handelt es sich um das Virus, das 2003 die SARS-Pandemie auslöste. Die beiden Viren – SARS-CoV und SARS-CoV2 – unterscheiden sich in ihrer RNA nur geringfügig, eine eindeutige Unterscheidung ist also schwierig. Doch das Experiment gelang: „Unsere Tests zeigten, dass der Sensor klar zwischen den sehr ähnlichen RNA-Sequenzen der beiden Viren unterscheiden kann“, erklärt Jing Wang.

Im Moment ist der Sensor zwar noch nicht bereit, um beispielsweise auf einem Hauptbahnhof die Coronaviren-Konzentration in der Luft zu messen. Dazu sind noch einige Schritte nötig – etwa ein System, der die Luft ansaugt, die Aerosole darin konzentriert und die RNA aus den Viren isoliert. „Das braucht noch Entwicklungsarbeit“, sagt Wang. Doch ist der Sensor erst einmal fertiggestellt, könnte sich das Prinzip auch auf andere Viren anwenden lassen – und dazu beitragen, dass künftige Epidemien frühzeitig detektiert und vielleicht sogar gestoppt werden können.

* Karin Weinmann arbeitet am Empa und ist für die Öffentlichkeitsarbeit verantwortlich.

(ID:46545378)