Lichtwellen-Elektronik: Höchste Taktraten ohne Wärmeentwicklung

| Redakteur: Julia Schmidt

Das elektrische Feld von Licht beschleunigt Elektronen (grüne Streifen) an der Oberfläche eines topologischen Isolators (elektronenmikroskopische Aufnahme links oben) bei optischen Taktraten.
Das elektrische Feld von Licht beschleunigt Elektronen (grüne Streifen) an der Oberfläche eines topologischen Isolators (elektronenmikroskopische Aufnahme links oben) bei optischen Taktraten. (Bild: Brad Baxley (parttowhole.com))

Seit einigen Jahren stagniert die Taktrate von Computern, denn die thermische Belastung wird zu groß. Nun wollen Wissenschaftler einen Weg gefunden haben, die Taktrate massiv zu erhöhen ohne weitere Wärmeentwicklung – mit Hilfe von Lichtwellen-Elektronik.

Sie werden immer schneller, leistungsfähiger – und heißer. Elektronische Geräte schreiten in ihrer Entwicklung rasant voran. Doch allmählich werden die Grenzen der klassischen Elektronik spürbar. Die Anzahl der möglichen Rechenoperationen pro Sekunde und Transistor stagniert seit Jahren.

Physiker der Universitäten Regensburg, Marburg und Hiroshima sowie der Russischen Akademie der Wissenschaften in Novosibirsk haben nun eine Möglichkeit entdeckt, die Taktraten der Elektronik dennoch massiv zu erhöhen – und zwar ohne zusätzliche Wärmeentwicklung. Das Physiker-Team um Prof. Dr. Ulrich Höfer, Fachbereich Physik der Universität Marburg, und Prof. Dr. Rupert Huber, Institut für Experimentelle und Angewandte Physik der Universität Regensburg, nutzt mit der Lichtwellen-Elektronik das schnellste kontrollierbare Wechselfeld, das es in der Natur gibt: die Trägerwelle von Licht.

Statt Silizium verwenden die Forscher topologische Isolatoren

Verwendet man dieses Wechselfeld als Taktgeber, so sollte man Elektronik im Prinzip tausendfach beschleunigen können – statt in Gigahertz würde man Taktraten in Tera- oder gar Petahertz messen. Allerdings nur in der Theorie, denn dann würden die Elektronen auch häufiger an Kristallatome stoßen, wodurch noch mehr Wärme erzeugt würde.

Um dies zu verhindern, haben die Wissenschaftler tief in die Trickkiste der modernen Physik gegriffen: Statt des üblichen Halbleitermaterials Silizium setzen sie sogenannte topologische Isolatoren ein, deren ungewöhnliche Eigenschaften erst seit wenigen Jahren bekannt sind (siehe Nobelpreis für Physik 2016 an Kosterlitz, Haldane und Thouless).

Auf der Oberfläche dieser Materialien sollten alle Elektronen, die sich in eine Richtung bewegen, ihren Eigendrehimpuls, den sogenannten Spin, gleich ausrichten, während die Spins gegenläufiger Elektronen in die gegensätzliche Richtung weisen. Würden Elektronen ihre Bewegungsrichtung nun durch Streuung ändern, so müsste auch ihr Spin umklappen. Da dies quantenphysikalisch nicht einfach möglich ist, streuen solche Elektronen selten und entwickeln damit auch kaum Wärme.

Die zeitaufgelöste Photoelektronen-Spektroskopie

Nun haben die Forscher Lichtwellen-Elektronik erstmals mit topologischen Isolatoren kombiniert. Dafür haben sie Lichtimpulse aus der Regensburger Hochfeld-Terahertzquelle auf einen topologischen Isolator fokussiert und die Elektronen auf seiner Oberfläche beschleunigt. Die Beschleunigung tritt aber nur für den extrem kurzen Zeitraum einer halben Lichtschwingung auf. Allein um diese Elektronenbewegung zu beobachten, mussten die Physiker nebenbei eine neue Messmethode entwickeln.

Den Schlüssel zum Erfolg brachte ein Verfahren, das seit Jahren vom Marburger Team vorangetrieben wurde: die sogenannte „Zeitaufgelöste Photoelektronen-Spektroskopie“. Während der Beschleunigung lösen die Wissenschaftler mit ultravioletten Lichtimpulsen Elektronen aus der Oberfläche des topologischen Isolators aus und machen gewissermaßen Momentaufnahmen ihrer Geschwindigkeit.

Aus solchen Schnappschüssen lassen sich schließlich Zeitlupenfilme zusammensetzen, die zeigen, wie sich die Elektronen an der Oberfläche des topologischen Isolators auf der Zeitskala kürzer als eine einzige Lichtschwingung bewegen. Die Physiker stellen fest, dass sich die Elektronen ähnlich wie Teilchen benehmen, die in einem großen Beschleuniger nahe Lichtgeschwindigkeit gebracht wurden. Noch wichtiger: Trotz der rasanten Beschleunigung funktioniert die theoretisch erwartete Kopplung zwischen Bewegungsrichtung und Spin so gut, dass sich die Elektronen über große Distanzen vollkommen ballistisch bewegen, ohne am Gitter zu streuen und damit Wärme zu erzeugen.

„Das ist wie bei einer Billardkugel, die geradeaus rollt, solange sie von keiner anderen Kugel abgelenkt wird – nur viel, viel schneller“, erklärt Prof. Huber und freut sich: „Topologische Lichtwellen-Elektronik ist schnell, verlustfrei und kompakt – und somit womöglich die Technologie der Zukunft.“

Originalpublikation:

J. Reimann, S. Schlauderer, C. P. Schmid, F. Langer, S. Baierl, K. A. Kokh, O. E. Tereshchenko, A. Kimura, C. Lange, J. Güdde, U. Höfer, and R. Huber,„Subcycle observation of lightwave-driven Dirac currents in a topological surface band“, Nature (2018). DOI: 10.1038/s41586-018-0544-x

Erlauben eingefangene Lichtwellen lichtschnelle Computer?

Plasmonen

Erlauben eingefangene Lichtwellen lichtschnelle Computer?

03.09.15 - Oberflächen-Plasmonen sind Lichtwellen, die auf einer metallenen Oberfläche eingefangen werden. Amerikanische Forscher haben festgestellt, dass sich die Plasmonen auf der Oberfläche einige hundert Mikrometer weit bewegen – weit genug, um für die Computertechnik interessant zu sein? lesen

100.000 Mal schneller als die Elektronik von heute

Lichtwellenelektronik

100.000 Mal schneller als die Elektronik von heute

13.06.16 - Ein internationales Forscherteam hat die Wechselwirkung von Licht und Glas so optimiert, dass man sie für eine künftige, lichtwellengesteuerte Elektronik einsetzen könnte. lesen

Kommentar zu diesem Artikel abgeben

Schreiben Sie uns hier Ihre Meinung ...
(nicht registrierter User)

Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
Kommentar abschicken
copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de/ (ID: 45521737 / Digitale Bauelemente)