Suchen

Kleinster mikroelektronischer Roboter der Welt mit Düsenjet

| Redakteur: Kristin Rinortner

Eine Forschergruppe unter der Leitung von Prof. Oliver Schmidt von der TU Chemnitz hat den kleinsten Mikro-Roboter der Welt entwickelt. Der 0,8 mm lange fernsteuerbare Mikrobot ist mechanisch extrem flexibel, beweglich und mit diversen Funktionen ausgerüstet.

Firmen zum Thema

Mikro-Roboter: Die Idee eines komplexen mikroelektronischen Systems mit eigenem Antrieb und diversen Funktionen (Energiespeicherung, Elektronik, Sensorik, Kommunikation) wurde vor neun Jahren formuliert.
Mikro-Roboter: Die Idee eines komplexen mikroelektronischen Systems mit eigenem Antrieb und diversen Funktionen (Energiespeicherung, Elektronik, Sensorik, Kommunikation) wurde vor neun Jahren formuliert.
(Bild: Leibniz IFW Dresden )

Einem internationalen Forschungsteam unter Leitung von Prof. Dr. Oliver G. Schmidt von der TU Chemnitz ist ein Durchbruch bei mikroelektronischen Systemen gelungen. Sie haben den kleinsten mikroelektronischen Roboter der Welt entwickelt, der durch einen Zwillings-Düsenjet angetrieben und gesteuert wird. Der Roboter ist 0,8 mm lang, 0,8 mm breit und 0,14 mm hoch.

Ein besonderer Aspekt der Entwicklung lag auf der Bereitstellung von elektrischer Energie an Bord, die es dem hochflexiblen Mikro-Roboter erlaubt, verschiedene Aufgaben zu erfüllen. Das System ist zudem in hohem Maße manövrierfähig in wässriger Lösung und lässt sich fernsteuern. Darüber hinaus verfügt der Roboter über eine Lichtquelle und einen kleinen Greifarm, die kabellos mit Energie versorgt werden können.

Denkbar ist so der Einsatz von biomedizinischen Sensoren und Aktoren, die Anwendungen in den Bereichen der Mikro-Robotik und Medizintechnik ermöglichen. Beispiele hierfür sind das gezielte Verabreichen von Medikamenten oder die Diagnose von Krankheiten direkt im Organismus. Die Ergebnisse und Funktionsmöglichkeiten des Systems sind von so hoher Relevanz, dass sie als Titel der aktuellen Ausgabe von „Nature Electronics“ erscheinen.

Kontrolle und Steuerung in kabellosem Roboter umgesetzt

Das Forschungsfeld der Mikro-Roboter und Mikromotoren unterliegt seit mehr als zehn Jahren einem stark gestiegenem weltweitem Interesse. Insbesondere die fiktive Anwendung eines medizinischen Mini-U-Boots mit eigenem steuerbaren Antrieb beflügelt immer wieder sowohl die Grundlagen- als auch die angewandte Forschung. Dabei war das Ziel, die Entwicklung eines vollständig kontrollier- und steuerbaren mikroelektronischen Roboters, lange Zeit Science Fiction – bis jetzt.

Zwar gibt es mittlerweile chemisch angetriebene Mikromotoren, die in ersten medizinischen Studien in den USA auf ihre Tauglichkeit zur Heilung bestimmter Krankheiten getestet werden, allerdings handelt es sich dabei um sehr einfache Systeme, die weder über elektrische Energie noch über mikroelektronische Einheiten an Bord verfügen. Eine gezielte Kontrolle und Steuerung der Mikroroboter ist somit nicht möglich. Das ist bei dem von Oliver G. Schmidt und seinem Team entwickelten System anders – dabei basiert es auf einer neun Jahre alten Idee.

Voll fernsteuerbarer Mikro-Antrieb – Neun Jahre alte Idee wird Realität

„Vor fast zehn Jahren habe ich mit meinem damaligen Team die Idee formuliert, winzige chemische Düsenantriebe mit mikroelektronischen Komponenten zu verbinden, um damit zwei Fachrichtungen zusammenzuführen, die bis dahin nur wenig gemeinsam hatten. Es ist wunderbar zu sehen, dass diese Idee durch die technologische Innovationskraft meines Doktoranden Vineeth Kumar Bandari und das außergewöhnliche wissenschaftliche Engagement von Dr. Feng Zhu nun in einer ersten vereinfachten Form experimentell realisiert werden konnte“, erklärt Schmidt.

|videoid=https://youtu.be/rTDbI_DEVpA|

Die Antriebseinheit des nun vorgestellten Systems besteht aus aufgerollten Mikroröhrchen, die Schub durch den druckhaften Ausstoß von Sauerstoffbläschen erzeugen. Diesen Vorgang konnten die Forscherinnen und Forscher in einem der beiden Mikroröhrchen thermisch kontrollieren und so den Mikro-Roboter in verschiedene Richtungen steuern. Der Video-Clip veranschaulicht die technischen Möglichkeit des mikroelektronischen Roboters.

Das komplette mikroelektronische System fertigten die Wissenschaftler aus einer Kombination aus Nano-Membranen auf Polymer-Basis an, die in dieser Kombination eine wesentliche Rolle spielt. Die Konstruktion ist mechanisch hochflexibel und ermöglicht die Aufnahme elektronischer Komponenten und steuerbarer Aktuatoren.

Für letzteres fertigte das Team eine dünne Schicht aus einem temperaturempfindlichen Polymer und integrierte diese als Aktor an einem Ende des mikro-robotischen Systems. Durch die justierbare lokale Erhöhung oder Verringerung der Temperatur ist es möglich, den Aktor zu schließen und zu öffnen, um kleinste Objekte zu greifen und wieder loszulassen.

Elektrische Energie in einem Mikro-Roboter

Da der Mikroroboter Energie braucht, aber nicht einfach an der Steckdose geladen werden kann, kommt ein System für die drahtlose Energieübertragung zum Einsatz, das aus einem externen Transmitter und einer in dem Mikrosystem integrierten Empfangsantenne besteht. Die Energie wird per Induktion übertragen – das Prinzip ist mit dem kabellosen Aufladen eines Handys vergleichbar. Es ist das erste Mal, dass die kabellose Übertragung elektrischer Energie in einem derart kleinen Mikro-Roboter genutzt werden kann.

Mit ihrer bahnbrechenden Arbeit zur Fertigung des kleinsten mikroelektronischen Roboters, der kabellos mit Energie versorgt werden kann, fernsteuerbar und voll manövrierfähig ist sowie über eine Aktorik verfügt, legen die Forscher um Prof. Dr. Oliver G. Schmidt eine wesentliche Grundlage für den zukünftigen Einsatz von autonom arbeitenden Mikrorobotern im biomedizinischen Sektor.

Da aktuell für den Antrieb unter anderem auch Wasserstoffperoxid notwendig ist, kann das System in dieser Labor-Konfiguration noch nicht direkt im menschlichen Körper eingesetzt werden. Eine Weiterentwicklung ist dafür nötig, der sich das Forschungsteam in einem nächsten Schritt widmen wird.

An dem Projekt waren neben der TU Chemnitz und dem IFW Dresden die Chinesische Akademie der Wissenschaften Changchun und die Technische Universität Dresden beteiligt.

Originalpublikation: A flexible microsystem capable of controlled motion and actuation by wireless power transfer by Oliver G. Schmidt et al.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 46493184)