Licht steuert Licht

Bayreuther Forscher bauen optischen Transistor

| Redakteur: Peter Koller

Dr. Martti Pärs arbeitet am Lehrstuhl für Experimentalphysik IV der Universität Bayreuth. Die Experimente zur Funktion eines optischen Transistors hat er maßgeblich vorangetrieben. (Foto: Lehrstuhl für Experimentalphysik IV, Universität Bayreuth)
Dr. Martti Pärs arbeitet am Lehrstuhl für Experimentalphysik IV der Universität Bayreuth. Die Experimente zur Funktion eines optischen Transistors hat er maßgeblich vorangetrieben. (Foto: Lehrstuhl für Experimentalphysik IV, Universität Bayreuth)

Der elektronische Transistor ist eine der einflussreichsten Erfindungen des 20. Jahrhunderts. An der Universität Bayreuth hat ein Forschungsteam jetzt die Verstärkerfunktion eines optischen Transistors demonstriert. In diesem Transistor ersetzt Licht den elektrischen Strom.

In der neuen Online-Ausgabe der Zeitschrift "Angewandte Chemie International Edition" stellen die Bayreuther Wissenschaftler um Prof. Dr. Jürgen Köhler, Dr. Martti Pärs und Prof. Dr. Mukundan Thelakkat ihre Entdeckung vor.

Die jetzt veröffentlichten Ergebnisse sind hervorgegangen aus der engen Zusammenarbeit zwischen der Experimentalphysik und der Makromolekülchemie auf dem Bayreuther Campus. Sie legen Grundlagen für eine völlig neue Generation von Transistoren.

Ein lichtgesteuerter Schalter und ein leuchtstarker Partner

Das in Bayreuth verwendete Bauprinzip eines optischen Transistors ist einfach. Zwei Moleküle werden chemisch miteinander verbunden. Durch Lichtsignale mit unterschiedlichen Wellenlängen wird das eine der beiden Moleküle abwechselnd in einen Zustand A oder B versetzt.

Es reagiert dabei wie ein Schalter, der zwischen zwei gegensätzlichen Stellungen hin- und herspringt. Je nachdem, ob sich dieses lichtgesteuerte Schalter-Molekül im Zustand A oder B befindet, sendet das mit ihm verbundene Molekül ein schwaches oder starkes Lichtsignal aus: Licht steuert Licht.

Dabei entsteht ein erheblicher Verstärkungseffekt. Denn schon ein kleines Lichtsignal reicht aus, um das Schalter-Molekül in eine Stellung zu bringen, in der das Partnermolekül stark aufleuchtet.

Höchste Effizienz auf kleinstem Raum

Ein so funktionierender Transistor bietet erhebliche Vorteile, wenn man ihn mit herkömmlichen Transistoren vergleicht: Letztere lassen sich aus physikalischen Gründen nicht beliebig verkleinern. Allen Bestrebungen, möglichst kleine Schaltkreise für den Transport elektrischer Signale zu entwickeln, ist eine natürliche Grenze gesetzt.

Hingegen lässt sich eine Steuerung von Lichtsignalen durch Lichtsignale bereits auf molekularer Ebene realisieren, wie die Bayreuther Wissenschaftler jetzt gezeigt haben.

Optische Transistoren kann es daher prinzipiell bereits auf molekularer Längenskala geben. Sie sind von Hause aus kleiner und damit auch schneller als elektrische Transistoren.

Ein weiterer Vorteil: Weil Lichtsignale – im Gegensatz zu elektrischen Signalen – sich nicht gegenseitig stören, können mehrere optische "Mini-Transistoren" zu einem größeren und umso leistungsfähigeren Transistor zusammengesetzt werden. Dann werden viele Daten auf kleinstem Raum parallel verarbeitet.

Und schließlich ist jeder optische Transistor, wie groß er auch sein mag, in einer Hinsicht unschlagbar: Alle Signale werden mit Lichtgeschwindigkeit verarbeitet – schneller geht’s nicht.

Das Innenleben eines optischen Transistors

Bei dem in Bayreuth verwendeten Schalter-Molekül handelt es sich um Dithienylcyclopenten (DCP). Im Zentrum dieses symmetrisch aufgebauten Moleküls befindet sich ein Kohlenstoffring. Ist dieser Ring geschlossen, öffnet er sich, sobald er von einem ultravioletten Lichtstrahl (280 - 310 nm) getroffen wird.

Ist der Ring offen, schließt er sich, sobald er einem sichtbaren farbigen Lichtstrahl (500 - 650 nm) ausgesetzt ist. Weil das DCP, abhängig von der Wellenlänge des Lichtstrahls, zwischen den beiden Strukturen hin- und herwechselt, wird es in der Forschung als photochromes Molekül bezeichnet.

An gegenüberliegenden Seiten des DCP haben die Bayreuther Forscher zwei organische Moleküle angehängt, die der Gruppe der Perylenbisimide (PBI) angehören.

PBI-Moleküle sind dafür bekannt, dass sie stark aufleuchten – genauer gesagt: fluoreszieren – können. Dies ist immer dann der Fall, wenn ein PBI-Molekül Lichtenergie absorbiert hat und diese in vollem Umfang nach außen abgibt.

Ein PBI-Molekül, das wie ein Arm an ein DCP-Molekül angehängt ist, leuchtet unterschiedlich stark – je nachdem, ob der Ring in diesem Schalter-Molekül offen oder geschlossen ist.

Herausforderungen für die Forschung

Mit diesen Forschungsergebnissen zeichnet sich die Zukunftsvision einer neuartigen Generation von Transistoren ab. Damit sie eines Tages verwirklicht werden kann, sind aber weitere Forschungsarbeiten erforderlich.

Beispielsweise hat es den Anschein, als ob die fluoreszierenden PBI-Moleküle während langer Zeiträume ausbleichen, so dass ihre Leuchtkraft schwächer wird. Diesen Effekt gilt es genauer zu untersuchen.

Ein weiterer Aspekt: In der bisher verwendeten Versuchsanordnung dauert es relativ lange, bis sich die Ringe bei einer großen Zahl von DCP-Molekülen öffnen und wieder schließen.

Folglich sind die Abstände zwischen den dadurch gesteuerten Lichtsignalen noch ziemlich groß. Das Bayreuther Forschungsteam sucht deshalb nach einer Lösung, um diese Zeiten zu verkürzen.

Kommentar zu diesem Artikel abgeben

Schreiben Sie uns hier Ihre Meinung ...
(nicht registrierter User)

Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
Kommentar abschicken
copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 29688400 / Mikrocontroller & Prozessoren)