Friedrich-Alexander-Universität Erlangen-Nürnberg

Substrat-Elektrode bringt Graphen-Elektronik näher

| Redakteur: Peter Koller

Graphen wird auf einen Siliziumkarbid-Kristall (grau) synthetisiert. Durch gezielte Manipulation der Kristalleigenschaften wird eine Ansteuerelektrode (blau) im Siliziumkarbid erzeugt, mit der – über Kontakte aus Gold – der Stromfluss durch die Graphenschicht gesteuert werden kann. (Grafik: J. Jobst, J. Lottes, M. Krieger)
Graphen wird auf einen Siliziumkarbid-Kristall (grau) synthetisiert. Durch gezielte Manipulation der Kristalleigenschaften wird eine Ansteuerelektrode (blau) im Siliziumkarbid erzeugt, mit der – über Kontakte aus Gold – der Stromfluss durch die Graphenschicht gesteuert werden kann. (Grafik: J. Jobst, J. Lottes, M. Krieger)

Kommerziell nutzbare Elektronik-Bauteile aus dem möglichen Silizium-Nachfolger Graphen rücken näher: Forschern der Universität Erlangen-Nürnberg ist es gelungen, Graphen durch Manipulation des Siliziumkarbid-Substrats mit Steuerelektroden zu versehen.

Graphen gilt wegen seiner physikalischen und chemischen Eigenschaften als eines der vielversprechendsten neuen Materialien. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) haben jetzt ein Verfahren entwickelt, das es erlaubt, Bauelemente aus Graphen mithilfe einer integrierten Elektrode gezielt anzusteuern – eine wichtige Voraussetzung für industrielle Anwendungen.

Ihre Forschungsergebnisse zu Graphen haben Prof. Heiko Weber, Daniel Waldmann, Johannes Jobst, Michael Krieger vom Lehrstuhl für Angewandte Physik und Prof. Thomas Seyller und Florian Speck vom Lehrstuhl für Technische Physik jetzt in der renommierten Zeitschrift „nature materials“ publiziert.

Graphen besteht aus einer einzigen Lage von Kohlenstoffatomen, die in einem aus Sechsecken zusammengesetzten Netzwerk so angeordnet sind, dass sie den ersten wahrhaft zweidimensionalen Festkörper bilden. Graphen begründet damit eine neue Klasse von Materialien.

Seine Entdeckung im Jahre 2004 hat zu weltweiten Forschungsaktivitäten geführt, die nur mit denen anlässlich der Entdeckung der Hochtemperatursupraleiter vergleichbar sind. 2010 wurde die Entdeckung von Graphen mit dem Nobelpreis für Physik ausgezeichnet. Die Begeisterung der Wissenschaftler für dieses neue Material nährt sich aus den für einen Festkörper völlig neuen elektronischen, optischen und magnetischen Eigenschaften des Graphens.

Um das große Potenzial von Graphen für elektronische Anwendungen nutzen zu können, ist die Schichtherstellung in hoher Qualität auf kristallinen Halbleiterscheiben – so genannten Wafern – sehr wichtig. Hier konnten Forscher der FAU einen bedeutenden Beitrag leisten: Prof. Dr. Thomas Seyller hat 2009 ein Verfahren entwickelt, mit dem Graphen in höchster Qualität auf Siliziumkarbid-Kristallen synthetisiert werden kann.

Der nächste wichtige Schritt ist es, ausgehend von Graphen-Wafern Bauelemente herzustellen. Insbesondere gilt es, die Graphenschichten für elektronische Anwendungen ansteuerbar zu machen.

Halbleiter wird zur Steuerelektrode für Graphen

Hier kommt das Trägermaterial ins Spiel: Siliziumkarbid ist ein Halbleiter, der durch geschickte Manipulation als integrierte Ansteuerelektrode verwendet werden kann. Das ist Professor Dr. Heiko Weber und seinem Team jetzt gelungen.

Die FAU-Forscher haben nicht nur Musterbauelemente hergestellt, sondern konnten auch die physikalischen Effekte en détail erklären, die bei Verwendung einer solchen Elektrode auftreten können.

Mit diesem Wissen ist es nun möglich, optimale integrierte Elektroden für Graphen für die verschiedensten Anwendungsbereiche maßzuschneidern. Der große Vorteil einer solchen Elektrode liegt auf der Hand: die Graphenschicht an der Oberfläche bleibt frei zugänglich.

Dies eröffnet völlig neue Möglichkeiten sowohl in der Forschung als auch in der Anwendung, z. B. für ultra-empfindliche Sensoren aus Graphen, die sogar einzelne Atome detektieren können.

(Quelle: IDW)

Kommentar zu diesem Artikel abgeben

Schreiben Sie uns hier Ihre Meinung ...
(nicht registrierter User)

Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
Kommentar abschicken
copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 26609100 / Hardwareentwicklung)