Suchen

Uni Innsbruck Der Quantencomputer öffnet sich und funkt

| Redakteur: Peter Koller

Wissenschaftlern um den Innsbrucker Physiker Rainer Blatt sind zwei bedeutende Fortschritte im Hinblick auf künftige Quantencomputer gelungen: Eine kontrollierte Anbindung der empfindlichen Quantenbits an die Umwelt sowie eine interne Funkkommunikation im Quantenprozessor per Quantenantennen.

Quantenantennen machen es möglich, Quanteninformation zwischen einzelnen Speicherzellen auf einem Computerchip auszutauschen. (Grafik: Harald Ritsch)
Quantenantennen machen es möglich, Quanteninformation zwischen einzelnen Speicherzellen auf einem Computerchip auszutauschen. (Grafik: Harald Ritsch)

Das Team um Rainer Blatt schlägt in der Fachzeitschrift Nature eine grundlegend neue Architektur für den Quantencomputer vor. Sie haben im Experiment erstmals die Funktion von Quantenantennen demonstriert. Diese machen es möglich, Quanteninformation zwischen einzelnen Speicherzellen auf einem Computerchip auszutauschen. Damit wird der Bau von handlicheren Quantencomputern denkbar.

Vor sechs Jahren wurde an der Universität Innsbruck das erste Quantenbyte – ein Quantencomputer mit acht Recheneinheiten – realisiert. Ein Rekord, der bis heute hält. „Um aber mit einem Quantencomputer richtig rechnen zu können, benötigen wir wesentlich mehr Quantenbits“, sagt Prof. Rainer Blatt, der dieses erste Quantenbyte mit einem Team am Institut für Experimentalphysik in einer elektromagnetischen Ionenfalle hergestellt hat. „In diesen Fallen können wir nicht beliebig viele Ionen aneinanderreihen und gleichzeitig kontrollieren.“

Bildergalerie

Die Wissenschaftler sind deshalb dazu übergegangen, den Quantencomputer als System von vielen kleinen Registern zu konzipieren. Diese müssen miteinander verbunden werden. Dafür haben die Innsbrucker Quantenphysiker nun einen revolutionären Ansatz entwickelt, der auf einer Idee der Theoretiker Ignacio Cirac und Peter Zoller basiert.

Im Labor konnten die Physiker zwei Gruppen von Ionen über eine Entfernung von rund 50 Mikrometern elektromagnetisch koppeln. Dabei dient die Bewegung der Teilchen als Antenne. „Die Teilchen schwingen wie die Elektronen in den Stäbe einer Fernsehantenne und erzeugen so ein elektromagnetisches Feld“, erklärt Blatt. „Wenn die Antennen aufeinander abgestimmt sind, nimmt der Empfänger das Signal des Senders auf und es entsteht eine Kopplung.“ Der dabei stattfindende Energieaustausch könnte die Grundlage für elementare Rechenoperationen eines Quantencomputers sein.

Antennen verstärken Übertragung

Die Wissenschaftler zeigen in dem Experiment darüber hinaus, dass die Kopplung umso stärker ist, je mehr Ionen in den beiden Gruppen vorhanden sind. „Die zusätzlichen Ionen wirken wie Antennen und erhöhen die Reichweite und Geschwindigkeit der Übertragung“, zeigt sich Rainer Blatt von dem neuen Konzept begeistert. Es stellt einen vielversprechenden Ansatz für den Bau eines voll funktionsfähigen Quantencomputers dar.

„Diese neue Technologie bietet uns die Möglichkeit zur Verschränkung mittels Kommunikation. Gleichzeitig können wir jede Speicherzelle einzeln ansprechen“, so Rainer Blatt. Der neue Quantencomputer könnte auf einem Chip mit vielen Mikrofallen basieren, in denen Ionen mittels elektromagnetischer Kopplung miteinander kommunizieren. Dies wäre ein weiterer wichtiger Schritt auf dem Weg zu alltagstauglichen Quantentechnologien für die Informationsverarbeitung.

Auch für ein anderes Problem des Quantenrechnens rückt eine Lösung näher: Experimentalphysiker stecken viel Zeit und Mühe in die Abschirmung sensibler Messungen gegen störende Einflüsse der Umwelt. Nun haben die Quantenphysiker in Innsbruck erstmals die Grundbausteine eines offenen Quantensimulators realisiert, bei dem die kontrollierte Anbindung an die Umgebung nutzbringend eingesetzt wird. Damit kann in Zukunft das Verhalten sehr komplexer Quantensysteme untersucht werden. Die Forscher berichten darüber in der Fachzeitschrift Nature.

Herkömmliche Computer scheitern sehr rasch an der Berechnung von Quantenphänomenen. Physiker entwickeln deshalb seit einigen Jahren auf verschiedenen Plattformen wie zum Beispiel Neutralatomen, Ionen oder Festkörpersystemen Quantensimulatoren, die ähnlich wie Quantencomputer die besonderen Eigenschaften der Quantenphysik zur Beherrschung dieser Komplexität nutzen.

Ein Team von Nachwuchsforschern aus den Arbeitsgruppen von Rainer Blatt und Peter Zoller an den Instituten für Experimentalphysik und Theoretische Physik der Universität Innsbruck sowie am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften bringt diese Bemühungen nun noch einen wesentlichen Schritt weiter. Sie haben zum ersten Mal einen umfassenden Baukasten für einen offenen Quantencomputer entwickelt, mit dem in Zukunft größere Quantensimulatoren zur Untersuchung komplexer Aufgabenstellungen konstruiert werden können.

Die Wissenschaftler nutzen dazu eine Eigenschaft, die üblicherweise in Experimenten möglichst minimiert wird: Störungen durch die Umwelt. Quantensysteme verlieren durch Störungen gewöhnlich Information und fragile Quanteneffekte wie Verschränkung oder Überlagerung werden zerstört. Die Physik nennt diesen Prozess Dissipation. Die Innsbrucker Forscher um die Experimentalphysiker Julio Barreiro und Philipp Schindler und den Theoretiker Markus Müller verwenden die Dissipation für ihren Quantensimulator aus gespeicherten Ionen zum ersten Mal gewinnbringend, indem sie die Kopplung an die Umgebung künstlich konstruieren.

„Wir kontrollieren nicht nur das Quantensystem aus bis zu vier Ionen in all seinen internen Zuständen, sondern auch seine Anbindung an die Umwelt“, erklärt Julio Barreiro. „In unserem Experiment nutzen wir dazu ein zusätzliches Ion, das mit dem Quantensystem wechselwirkt und gleichzeitig einen kontrollierten Kontakt zur Außenwelt herstellt“, erläutert Philipp Schindler. Das überraschende Ergebnis: Durch Dissipation lassen sich Quanteneffekte innerhalb des Systems, wie zum Beispiel Verschränkung, gezielt erzeugen und verstärken. „Dies ist uns durch den gezielten Einsatz des an sich störenden Umweltfaktors gelungen“, freut sich Markus Müller.

In der Theorie hat in den letzten Jahren ein Nachdenken darüber eingesetzt, wie Dissipation nicht wie bisher nur unterdrückt, sondern aktiv als Ressource für den Bau von Quantencomputern oder Quantenspeichern genutzt werden kann. In enger Kooperation zwischen Theoretikern und Experimentalphysikern in Innsbruck ist es nun erstmals gelungen, diese grundlegenden Effekte in einem Quantensimulator erfolgreich umzusetzen.

(Quelle: IDW)

(ID:25849520)