Autonomes Fahren 3D-Radarsensoren ohne toten Winkel

Redakteur: Dipl.-Ing. (FH) Hendrik Härter

Forscher haben spezielle Radarmodule entwickelt, die sich frei am Fahrzeug positionieren lassen und in einem Sensornetzwerk eine 360°-Rundumsicht ermöglichen. Damit lässt sich das Umfeld in Echtzeit erfassen.

Firmen zum Thema

360°-Rundumsicht in automatisierten Fahrzeugen: Dank Panel Level Moldtechnologien wird dreidimensionale, in Form frei wählbare Radarsensorik möglich.
360°-Rundumsicht in automatisierten Fahrzeugen: Dank Panel Level Moldtechnologien wird dreidimensionale, in Form frei wählbare Radarsensorik möglich.
(Bild: Fraunhofer IZM)

Selbstfahrende Autos sollen bis zum Jahr 2030 massiv ausgebaut werden: In Europa sollen es zehn Millionen und in China fast doppelt so viele Fahrzeuge sein. Das sagt eine Prognose des Beratungsunternehmens PwC (siehe Grafik). Der Trend geht unweigerlich zum automatisierten Fahren, denn die Vorteile liegen auf der Hand: effizienterer Straßenverkehr durch Vernetzung der Fahrzeuge, Komfort und Zeiteinsparung für die Passagiere, vor allem aber erhöhte Sicherheit während der Fahrt.

So passieren die meisten Verkehrsunfälle doch aufgrund von menschlichen Fehlern. Um diese Sicherheit gewährleisten zu können, werden automatisierte Fahrzeuge mit Radarsensoren ausgestattet, die ihre Umgebung scannen und verarbeiten. Da diese Sensoren derzeit flächig aufgebaut und bevorzugt an Front und Heck des Fahrzeugs angebracht sind, überwachen sie üblicherweise einen Bereich von 180°. Doch was, wenn eine gänzlich lückenlose Abdeckung des Umfelds gesichert werden könnte?

Räumliche Auflösung und Zielklassifikation

Prognose: Zugelassene Fahrzeuge bis 2030 in Europa, USA und China.
Prognose: Zugelassene Fahrzeuge bis 2030 in Europa, USA und China.
(Bild: Statista)

Für eine 360°-Echtzeiterfassung und zur Aufnahme von kleinsten Objekten und Lebewesen aus verschiedenen Perspektiven, übersteigen Forscher im Projekt KoRRund die bestehenden Barrieren der Radar-Entwicklung und erforschten neue Ansätze räumlicher Auflösung sowie der Zielklassifikation.

Das Fraunhofer IZM war maßgeblich an den Entwicklungen des Teilvorhabens beteiligt, in dem Moldtechnologien für die 3D-Radarsensorik simuliert, aufgebaut und getestet wurden. Um optimale Hochfrequenz-Antennen mit den Methoden der Höchstintegration zu entwickeln, haben die drei Technologie-Partner des Teilvorhabens (Bosch, Schweizer Electronic AG & Fraunhofer IZM) einzeln Lösungsansätze erarbeitet, die zusammen mit dem Karlsruher Institut für Technologie (KIT) bezüglich ihrer HF-Eignung bewertet wurden.

Forschungsschwerpunkt von SEAG und Bosch in KoRRund war der Transfer vom Zweidimensionalen in die dritte Dimension durch das Einführen von flexiblen Bereichen, also die Realisierung klappbarer Aufbauten auf Basis etablierter Fertigungstechnologien. Hier schlug das Fraunhofer IZM auf Basis der Compression Mold Technologie einen vielversprechenden Weg hin zu 3D-strukturierten Radarmodulen ein.

Robuste 3D-Antennen entwickeln

Die Forscher verkapseln das zuvor planare Hochfrequenz-Substrat in gebogener Form, so dass im Nachgang keine Fixierung mehr notwendig ist: Es entstand eine Freiformfläche für Antennen, die bei 76 GHz eingesetzt werden können und gleichzeitig nur ein Minimum an Bauraum beanspruchen. Mithilfe eines speziellen Verkapselungs-Systems wird es möglich, das bestückte Substrat zeitgleich formgebend zu hinterspritzen und eine auf dem Substrat montierte Hochfrequenz-Schaltung zu übermolden, also schützend zu umspritzen und – bei Flip Chips – zu unterfüllen.

Somit kann nahezu jede beliebige Geometrie robuster und kostengünstiger 3D-Antennen realisiert und auch in großen Stückzahlen hergestellt werden. Diese Technik kann nicht nur für die Rundumsicht am Auto, sondern auch in verschiedensten Antennendesigns von Nutzen sein. Von runden, eckigen bis hin zu ganz speziellen Formen – mit dieser Freiform-Technik sind industrielle Anwendungen in fast allen Bereichen des Radars, der Optik und auch der Sensorik denkbar.

Das Projekt KoRRund, in der Langform „Konforme und multistatische MIMO-Radarkonfigurationen zur Radarumsicht für das automatisierte Fahren“ wurde Ende 2020 nach einer Projektlaufzeit von drei Jahren erfolgreich abgeschlossen. Die Projektpartner Inmach, die Hochschule Ulm, das KIT, Schweizer Electronics AG und die Universität Ulm haben unter der Koordination von Bosch an den Erfolgen des Projekts ebenso mitgewirkt, wie das Fraunhofer IZM. Gefördert wurde das Projekt vom Bundesministerium für Bildung und Forschung mit einer Summe von 4,6 Millionen Euro.

(ID:47269597)