Power-Tipps von TI, Teil 50

Netzteil-Regelschleife mit P-SPICE

07.02.13 | Autor / Redakteur: Robert Kollman * / Johann Wiesböck

Power-Tipp von TI, Teil 50
Power-Tipp von TI, Teil 50 (Bild: VBM-Archiv)

P-SPICE eignet sich ebenso wie ein anderer Simulator als höchst effektives Hilfsmittel für die Synthese von Regelschleifen für Netzteile. Um dies zu demonstrieren, wird im folgenden Power Tipp die Regelschleife für den in Bild 1 gezeigten integrierten, synchronen Abwärtswandler mithilfe von P-SPICE ausgearbeitet.

Das verwendete IC arbeitet mit einem Transkonduktanz-Fehlerverstärker und einer internen Spannungsreferenz. Die mit R6 und R7 abgetastete Ausgangsspannung wird mit der internen Referenzspannung von 0,8 V verglichen, woraufhin der Fehlerverstärker am Anschluss COMP (Pin 8) einen Strom ausgibt, dessen Höhe proportional zur Differenz zwischen Soll und Ist-Spannung ist.

Der Strom fließt über Kompensations-Impedanzen zur Masse und erzeugt eine Spannung, die den Strom in der Drossel L1 so variiert, dass für eine geregelte Ausgangsspannung gesorgt ist. Das IC bedient sich der Current-Mode-Regelung, um die Ausgangs-Drossel L1 in eine Stromquelle zu verwandeln.

Der Strom in L1 ist stets proportional zu der an COMP anliegenden Ausgangsspannung des Fehlerverstärkers. Der Drosselstrom fließt über den Ausgangskondensator und den Lastwiderstand und erzeugt dabei eine Spannung, die den Regelkreis schließt.

Bild 2 zeigt ein auf dem Schaltplan von Bild 1 basierendes P-SPICE-Modell. Die Kompensations-Bauteile R3, C3 und C13 sowie die Widerstände des Spannungsteilers sind identisch mit jenen im Schaltplan. Unterschiede zwischen Schaltplan und Modell bestehen dagegen in folgender Hinsicht:

  • Der Transkonduktanz-Verstärker und die Leistungsstufe sind als spannungsgesteuerte Stromquellen modelliert.
  • Mit dem Einfügen von Reramp und dem Anheben der Kapazität von C7 werden die internen parasitären Elemente im Zusammenhang mit dem Fehlerverstärker nachgebildet.
  • Die Kapazität des Ausgangskondensators C11 wird von 47 µF auf 30 µF geändert, um die Kapazitätsreduzierung infolge der DC-Vorspannung zu berücksichtigen (siehe Power-Tipp Nr. 46).
  • VAC wird eingefügt, damit die Schleifenverstärkung als Verhältnis zwischen der eingespeisten Spannung und der Rückspannung gemessen werden kann.
  • Einfügung der Verzögerungsleitung T1 und des Abschlusswiderstands Rdl. Diese letzte Modifikation hat den Zweck, die Abtastverzögerung der Regelschaltung zu simulieren.

Zwischen dem Zeitpunkt, zu dem die Schaltung ihren Zustand wechseln sollte, und dem tatsächlichen Zustandswechsel existiert immer eine gewisse Verzögerung. Da die durchschnittliche Verzögerungszeit einer halben Schaltperiode entspricht, wird eine Verzögerungsleitung mit genau dieser Zeitkonstante eingefügt und mit einem Abschlusswiderstand von 50 Ω versehen.

Bild 3 gibt die gemessene Schleifenverstärkung des in Bild 1 dargestellten Netzteils wieder. Die Schaltfrequenz des Netzteils beträgt 600 kHz, sodass die nahe 200 kHz liegende Durchtrittsfrequenz ungefähr ein Drittel der Schaltfrequenz ausmacht. Bei einem derart großen Verhältnis zwischen Schalt und Durchtrittsfrequenz darf die Phasenverzögerung des Modulators nicht vernachlässigt werden. Bei 300 kHz (der halben Schaltfrequenz) bewirkt die Abtastverzögerung immerhin eine Phasenverzögerung von 90°.

Inhalt des Artikels:

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 37574670) | TI, VBM-Archiv