Vom Elektro-Rennwagen bis zum Sensorknoten für Stromnetze

7 spannende Sensoranwendungen verschiedener Fraunhofer-Institute

| Redakteur: Hendrik Härter

Der Rennwagen vom E-Rennstall der Hochschule Esslingen rast lautlos über Pisten. Ein E-Motor treibt das Gefährt an.
Der Rennwagen vom E-Rennstall der Hochschule Esslingen rast lautlos über Pisten. Ein E-Motor treibt das Gefährt an. (Bild: E-Rennstall, Hochschule Esslingen)

Auf der diesjährigen Sensor+Test in Nürnberg haben Wissenschaftler aus 10 verschiedenen Fraunhofer-Instituten ihre Sensorik-Entwicklungen präsentiert. Die ELEKTRONIKPRAXIS war vor Ort.

Sensoren lassen sich aus unserem Alltag nicht mehr wegdenken. Sie sind klein und unauffällig und übernehmen wichtige Aufgaben. Sei es in Textilien, Smartphones, Autos, chirurgischen Instrumenten oder Kameras.

Ein neuartiges Batteriemanagement- und Stromsensorik-Konzept wurde am Beispiel eines Elektro-Rennwagens demonstriert. Der Rennwagen beschleunigt von Null auf 100 in 3,6 Sekunden – so rasant beschleunigt nicht etwa ein Porsche Carrera oder ein Ferrari Scaglietti, sondern EVE – ein Rennwagen, der keine lauten Motorengeräusche verursacht. Denn EVE wird von zwei Elektromotoren, je einer pro Hinterrad, angetrieben.

Bei einer maximalen Leistung von 60 kW bringen kommt der E-Flitzer mit 4500 Umdrehungen pro Minute auf Touren. Der Sprinter erreicht eine Höchstgeschwindigkeit von 140 Stundenkilometer. Zwei Lithium-Polymer-Batterien mit einer Kapazität von insgesamt 8 Kilowatt pro Stunde ermöglichen eine Reichweite von 22 Kilometer.

Elektrotechnikstudenten vom E-Rennstall der Hochschule Esslingen haben das 300-Kilogramm-Auto neben ihrem Studium konstruiert. Sie sind damit bereits beim internationalen »Formula-Student-Electric«-Wettbewerb in Italien gestartet. Forscher vom Fraunhofer-Institut für Integrierte Schaltungen IIS in Erlangen haben die komplette Stromsensorik in enger Kooperation mit der Seuffer GmbH & Co.KG entwickelt – einem Industriepartner, mit dem sie seit mehr als elf Jahren zusammenarbeiten. Das Calwer Unternehmen sponsort die Studenten vom Team »E.Stall«.

Wie sich der Ladezustand der Batterie ermitteln lässt

Die beiden seitlich der Batterien angebrachten Stromsensoren nutzen die 3-D-Magnetfeldsensor-Technologie vom IIS, um das vom elektrischen Stromfluss erzeugte Magnetfeld zu messen und so den Ladezustand des Akkus zu ermitteln. Das Besondere: Die Sensoren messen berührungslos den Strom, der von der Batterie zum Motor fließt, und beim Bremsvorgang vom Motor zur Batterie zurückströmt.

Die integrierte Sensorik erlaubt es, Störungen und Fremdmagnetfelder zu eliminieren, sodass eine hohe Messgenauigkeit garantiert ist. Ein weiterer Vorteil: Neben dem Strom lassen sich auch Größen wie Spannung und Temperatur der Batterie erfassen. Die ermittelten Werte werden an die Power Control Unit (PCU) und das Batteriemanagementsystem (BMS) übertragen, das die Lade- und Endladevorgänge kontrolliert.

Limitierender Faktor aller Elektrofahrzeuge sind die kurzen Batterielaufzeiten und die begrenzte Lebensdauer der Akkus. Das BMS des Fraunhofer IIS in Nürnberg adressiert dieses Problem, indem es das Impedanzspektrum aller Batteriezellen ermittelt und permanent deren Funktionsfähigkeit prüft. So lassen sich Aussagen über den Gesundheitszustand, die aktuelle Kapazität oder die potentielle Lebensdauer der Zelle machen und genauere Laufzeitvorhersagen treffen.

Durch Alterung können die einzelnen Batteriezellen mit der Zeit weniger Energie speichern. Die Herausforderung liegt darin, die Nutzung der Zellen zu optimieren. »Bisher konnte einem Batteriesystem nur soviel Energie entnommen werden, wie in der schwächsten Zelle vorhanden ist. Die Energie der anderen Zellen blieb ungenutzt.

Unser BMS verfügt über eine aktive Zellsymmetrierung, mit der sich Energie zwischen stärkeren und schwächeren Zellen transportieren lässt. So werden alle Zellen gleichmäßig belastet und die maximale Kapazität des gesamten Akkublocks kann verwendet werden«, erläutert Dr.-Ing. Peter Spies, Gruppenleiter am IIS in Nürnberg.

Durch die aktive Ausbalancierung der Zellen während des Lade- und Entladevorgangs lassen sich Lebensdauer und Reichweite des Akkus vergrößern. »Das derzeit in EVE verbaute BMS ist eine Eigenentwicklung des ‚E.Stall‘. Es ließe sich aber durch unsere Lösung ersetzen«, sagt Spies.

Kamera erkennt Risse in der Karosserie

EVE verfügt über kompakte Außenmaße, einen Stahl-Gitterrohrrahmen und eine Karosserie aus Carbon. Da auf der Piste hohe Belastungen auf die Kunststofffasern wirken, können winzige Risse im Material auftreten. Um die Schäden frühzeitig zu erkennen, misst eine vom IIS in Erlangen entwickelte Polarisationskamera Spannungen in der Carbonstruktur (nicht lackierte Flächen).

POLKA heißt die handliche Kamera, die die Kratzer sichtbar macht. Sie registriert Eigenschaften des Lichts, die dem menschlichen Auge verborgen bleibt – die Polarisation. Bei Materialspannungen im Kunststoff ändern sich die Polarisationseigenschaften. POLKA bestimmt die gesamte Polarisationsinformation mit einer einzigen Aufnahme und einer Geschwindigkeit von bis zu 250 Bildern pro Sekunde pixelgenau.

Die zugehörige Software übersetzt die gewonnenen Informationen über Intensität, Winkel und Grad der Polarisation durch eine online-Farbcodierung in eine für das menschliche Auge geeignete Darstellung. Das System wird ebenfalls am Fraunhofer-Gemeinschaftsstand präsentiert.

Kommentar zu diesem Artikel abgeben
Der besondere Griff für die Operation: .....Der Instrumentengriff lässt sich bei 134 Grad Celsius...  lesen
posted am 15.05.2013 um 23:08 von pkoller


Mitdiskutieren
copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 39615580 / Messen/Testen/Prüfen)